Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
1.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216177

RESUMO

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Assuntos
Proteínas de Anfíbios/farmacologia , Anfíbios/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/química , Vírus de DNA/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Proteínas de Anfíbios/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Lipídeos/química , SARS-CoV-2/efeitos dos fármacos , Células Vero
2.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055066

RESUMO

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Assuntos
Proteínas de Anfíbios/farmacologia , Peptídeos Antimicrobianos/farmacologia , Antivirais/farmacologia , Ranidae/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Vírus de DNA/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Células Vero , Envelope Viral/efeitos dos fármacos , Ensaio de Placa Viral , Viroses/tratamento farmacológico
3.
Sci China Life Sci ; 65(2): 341-361, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34047913

RESUMO

Viruses utilize cellular lipids and manipulate host lipid metabolism to ensure their replication and spread. Therefore, the identification of lipids and metabolic pathways that are suitable targets for antiviral development is crucial. Using a library of compounds targeting host lipid metabolic factors and testing them for their ability to block pseudorabies virus (PRV) and vesicular stomatitis virus (VSV) infection, we found that U18666A, a specific inhibitor of Niemann-Pick C1 (NPC1), is highly potent in suppressing the entry of diverse viruses including pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). NPC1 deficiency markedly attenuates viral growth by decreasing cholesterol abundance in the plasma membrane, thereby inhibiting the dynamics of clathrin-coated pits (CCPs), which are indispensable for clathrin-mediated endocytosis. Significantly, exogenous cholesterol can complement the dynamics of CCPs, leading to efficient viral entry and infectivity. Administration of U18666A improves the survival and pathology of PRV- and influenza A virus-infected mice. Thus, our studies demonstrate a unique mechanism by which NPC1 inhibition achieves broad antiviral activity, indicating a potential new therapeutic strategy against SARS-CoV-2, as well as other emerging viruses.


Assuntos
Androstenos/farmacologia , Clatrina/fisiologia , Invaginações Revestidas da Membrana Celular/fisiologia , Vírus de DNA/efeitos dos fármacos , Proteína C1 de Niemann-Pick/fisiologia , Vírus de RNA/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Vírus de DNA/fisiologia , Proteína C1 de Niemann-Pick/antagonistas & inibidores , Vírus de RNA/fisiologia
4.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575975

RESUMO

Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.


Assuntos
Crotonatos/farmacologia , Vírus de DNA/efeitos dos fármacos , Hidroxibutiratos/farmacologia , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Neuroglia/efeitos dos fármacos , Nitrilas/farmacologia , Toluidinas/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/virologia , Linhagem Celular , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/virologia , Vírus de DNA/patogenicidade , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/virologia , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/uso terapêutico , Vírus JC/efeitos dos fármacos , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/virologia , Neuroglia/virologia , Viroses/tratamento farmacológico , Viroses/genética , Viroses/virologia
5.
Braz J Microbiol ; 52(4): 2475-2482, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562234

RESUMO

Bufotenine, an alkaloid that can be found in plant extracts and skin secretions of amphibians, is reported to have potential antiviral activity. The present study evaluated the antiviral activity of bufotenine against different genetic lineages of rabies virus (RABV, a single-stranded, negative-sense RNA virus), canine coronavirus (CCoV, a positive-sense RNA virus) and two double-stranded DNA viruses (two strains of herpes simplex virus type 1/HSV-1 [KOS and the acyclovir-resistant HSV-1 strain 29R] and canine adenovirus 2, CAV-2). The maximal non-toxic bufotenine concentrations in Vero and BHK-21 cells were determined by MTT assays. The antiviral activity of bufotenine against each virus was assessed by examination of reductions in infectious virus titres and plaque assays. All experiments were performed with and without bufotenine, and the results were compared. Bufotenine demonstrated significant RABV inhibitory activity. No antiviral action was observed against CCoV, CAV-2 or HSV-1. These findings indicate that the antiviral activity of bufotenine is somewhat linked to the particular infectious dose used and the genetic lineage of the virus, although the mechanisms of its effects remain undetermined.


Assuntos
Antivirais , Bufotenina , Vírus de DNA/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Animais , Antivirais/farmacologia , Bufotenina/farmacologia , Chlorocebus aethiops , Cricetinae , Células Vero
6.
Eur J Med Chem ; 225: 113738, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34425312

RESUMO

The search for new methods of antiviral therapy is primarily focused on the use of substances of natural origin. In this context, a triterpene compound, betulin 1, proved to be a good starting point for derivatization. Thirty-eight betulin acid ester derivatives were synthetized, characterized, and tested against DNA and RNA viruses. Several compounds exhibited 4- to 11-fold better activity against Enterovirus E (compound 5 EC50: 10.3 µM) and 3- to 6-fold better activity against Human alphaherpesvirus 1 (HHV-1; compound 3c EC50: 17.2 µM). Time-of-addition experiments showed that most of the active compounds acted in the later steps of the virus replication cycle (e.g., nucleic acid/protein synthesis). Further in-silico analysis confirmed in-vitro data and demonstrated that interactions between HHV-1 DNA polymerase and the most active compound, 3c, were more stable than interactions with the parent non-active betulin 1.


Assuntos
Antivirais/farmacologia , Ácidos Dicarboxílicos/farmacologia , Desenho de Fármacos , Ésteres/farmacologia , Triterpenos/farmacologia , Antivirais/síntese química , Antivirais/química , Vírus de DNA/efeitos dos fármacos , Ácidos Dicarboxílicos/síntese química , Ácidos Dicarboxílicos/química , Relação Dose-Resposta a Droga , Ésteres/síntese química , Ésteres/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Vírus de RNA/efeitos dos fármacos , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
7.
J Antibiot (Tokyo) ; 74(9): 559-573, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253887

RESUMO

A series of semisynthetic triterpenoids with A-ring azepano- and A-seco-fragments as well as hydrazido/hydrazono-substituents at C3 and C28 has been synthesized and evaluated for antimicrobial activity against key ESKAPE pathogens and DNA viruses (HSV-1, HCMV, HPV-11). It was found that azepanouvaol 8, 3-amino-3,4-seco-4(23)-en derivatives of uvaol 21 and glycyrrhetol-dien 22 as well as azepano-glycyrrhetol-tosylate 32 showed strong antimicrobial activities against MRSA with MIC ≤ 0.15 µM that exceeds the effect of antibiotic vancomycin. Azepanobetulinic acid cyclohexyl amide 4 exhibited significant bacteriostatic effect against MRSA (MIC ≤ 0.15 µM) with low cytotoxicity to HEK-293 even at a maximum tested concentration of >20 µM (selectivity index SI 133) and may be considered a noncytotoxic anti-MRSA agent. Azepanobetulin 1, azepanouvaol 8, and azepano-glycyrrhetol 15 showed high potency towards HCMV (EC50 0.15; 0.11; 0.11 µM) with selectivity indexes SI50 115; 136; 172, respectively. The docking studies suggest the possible interactions of the leading compounds with the molecular targets.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Triterpenos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antivirais/síntese química , Antivirais/química , Vírus de DNA/efeitos dos fármacos , Células HEK293 , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
8.
Viruses ; 13(7)2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199077

RESUMO

Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.


Assuntos
Vírus de DNA/genética , Vírus de DNA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Evasão da Resposta Imune , Vírus de RNA/genética , Antivirais/farmacologia , Códon de Terminação , Vírus de DNA/efeitos dos fármacos , Mudança da Fase de Leitura do Gene Ribossômico , Antígenos de Histocompatibilidade Classe I/genética , Conformação de Ácido Nucleico , Peptídeos/imunologia , Biossíntese de Proteínas , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/imunologia
9.
Viruses ; 13(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064347

RESUMO

Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Descoberta de Drogas , Animais , Antivirais/química , Antivirais/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Vírus de DNA/efeitos dos fármacos , Vírus de DNA/fisiologia , Desenvolvimento de Medicamentos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/fisiologia , Viroses/diagnóstico , Viroses/tratamento farmacológico , Viroses/etiologia , Viroses/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Eur J Med Chem ; 220: 113467, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33894564

RESUMO

Emerging and re-emerging viruses periodically cause outbreaks and epidemics all over the world, eventually leading to global events such as the current pandemic of the novel SARS-CoV-2 coronavirus infection COVID-19. Therefore, an urgent need for novel antivirals is crystal clear. Here we present the synthesis and evaluation of an antiviral activity of phenoxazine-based nucleoside analogs divided into three groups: (1) 8-alkoxy-substituted, (2) acyclic, and (3) carbocyclic. The antiviral activity was assessed against a structurally and phylogenetically diverse panel of RNA and DNA viruses from 25 species. Four compounds (11a-c, 12c) inhibited 4 DNA/RNA viruses with EC50 ≤ 20 µM. Toxicity of the compounds for the cell lines used for virus cultivation was negligible in most cases. In addition, previously reported and newly synthesized phenoxazine derivatives were evaluated against SARS-CoV-2, and some of them showed promising inhibition of reproduction with EC50 values in low micromolar range, although accompanied by commensurate cytotoxicity.


Assuntos
Antivirais/farmacologia , Vírus de DNA/efeitos dos fármacos , Nucleosídeos/farmacologia , Oxazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/toxicidade , Linhagem Celular Tumoral , Chlorocebus aethiops , Cães , Humanos , Células Madin Darby de Rim Canino , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/toxicidade , Oxazinas/síntese química , Oxazinas/toxicidade , Relação Estrutura-Atividade , Células Vero , Replicação Viral/efeitos dos fármacos
11.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920628

RESUMO

Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.


Assuntos
Antivirais/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Viroses/diagnóstico , Viroses/tratamento farmacológico , Animais , Vírus de DNA/efeitos dos fármacos , Humanos , Vírus de RNA/efeitos dos fármacos , Proteínas Virais/efeitos dos fármacos , Vírion/efeitos dos fármacos
12.
Viruses ; 12(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142686

RESUMO

Curcumin, the primary curcuminoid compound found in turmeric spice, has shown broad activity as an antimicrobial agent, limiting the replication of many different fungi, bacteria and viruses. In this review, we summarize recent studies supporting the development of curcumin and its derivatives as broad-spectrum antiviral agents.


Assuntos
Antivirais/farmacologia , Curcumina/química , Curcumina/farmacologia , Vírus de DNA/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Animais , Curcuma/química , Vírus de DNA/classificação , Humanos , Camundongos , Vírus de RNA/classificação , Viroses/tratamento farmacológico
13.
Medicine (Baltimore) ; 99(27): e21032, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32629728

RESUMO

BACKGROUND: Chronic hepatitis B is often complicated with different degrees of hepatic fibrosis, which affects the quality of life. Nucleoside analogs are recommended by almost all guidelines in the world for the treatment of chronic hepatitis B. At present, there is no specific and effective chemical and biological agents for hepatic fibrosis. In China, Chinese compound prescription combined with nucleoside analogs have been used to treat hepatic fibrosis of chronic hepatitis B patients in more and more cases, and good results have been achieved. Several Chinese compound prescriptions that have been made into proprietary Chinese medicine for the convenience of use. This article aims to systematically evaluate the efficacy and safety of Chinese medicine compounds assisting nucleoside analogs in the treatment of hepatic fibrosis in chronic hepatitis B patients. METHOD: The following databases will be searched from their inception to September 2019: PubMed, EMBASE, EBSCOhost, The Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical literature Database (CBM), VIP Database, Wanfang Database. Languages are limited to Chinese and English. The study includes randomized controlled trials using Chinese compound prescription combined with entecavir and Chinese compound prescription combined with tenofovir disoproxil fumarate to treat hepatic fibrosis of chronic hepatitis B patients. The primary outcomes including effective rate and biochemical parameters (levels of hyaluronic acid, laminin, pre-type-III collagen and type IV collagen will be tested. Additional outcomes include liver function indexes (levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin) and levels of hepatitis B virus DNA. Stata14.0 software will be used for meta-analysis. RESULT: The efficacy and safety of Chinese compound prescriptions assisting nucleoside analogs for hepatic fibrosis of chronic hepatitis B patients will be assessed from the effective rate, biochemical parameters, liver function indexes, and levels of hepatitis B virus DNA. CONCLUSION: The conclusion of this study will be used to evaluate the efficacy and safety of Chinese compound prescriptions assisting nucleoside analogs in the treatment of hepatic fibrosis of chronic hepatitis B patients, as well as the adjuvant effectiveness of Chinese compound prescriptions in combined therapy. PROSPERO REGISTRATION NUMBER: CRD42020156859.


Assuntos
Hepatite B Crônica/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Nucleosídeos/análogos & derivados , Antivirais/uso terapêutico , China/epidemiologia , Vírus de DNA/efeitos dos fármacos , Bases de Dados Factuais , Quimioterapia Combinada/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Guanina/análogos & derivados , Guanina/uso terapêutico , Hepatite B Crônica/complicações , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/psicologia , Testes de Função Hepática/métodos , Masculino , Nucleosídeos/uso terapêutico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Tenofovir/uso terapêutico , Metanálise como Assunto
14.
J Antibiot (Tokyo) ; 73(9): 593-602, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32533071

RESUMO

Ivermectin proposes many potentials effects to treat a range of diseases, with its antimicrobial, antiviral, and anti-cancer properties as a wonder drug. It is highly effective against many microorganisms including some viruses. In this comprehensive systematic review, antiviral effects of ivermectin are summarized including in vitro and in vivo studies over the past 50 years. Several studies reported antiviral effects of ivermectin on RNA viruses such as Zika, dengue, yellow fever, West Nile, Hendra, Newcastle, Venezuelan equine encephalitis, chikungunya, Semliki Forest, Sindbis, Avian influenza A, Porcine Reproductive and Respiratory Syndrome, Human immunodeficiency virus type 1, and severe acute respiratory syndrome coronavirus 2. Furthermore, there are some studies showing antiviral effects of ivermectin against DNA viruses such as Equine herpes type 1, BK polyomavirus, pseudorabies, porcine circovirus 2, and bovine herpesvirus 1. Ivermectin plays a role in several biological mechanisms, therefore it could serve as a potential candidate in the treatment of a wide range of viruses including COVID-19 as well as other types of positive-sense single-stranded RNA viruses. In vivo studies of animal models revealed a broad range of antiviral effects of ivermectin, however, clinical trials are necessary to appraise the potential efficacy of ivermectin in clinical setting.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Vírus de DNA/efeitos dos fármacos , Ivermectina/uso terapêutico , Vírus de RNA/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacologia , Betacoronavirus/genética , Linhagem Celular/virologia , Modelos Animais de Doenças , Saúde Global , Humanos , Ivermectina/química , Ivermectina/farmacologia , Estrutura Molecular , SARS-CoV-2
15.
Nat Rev Microbiol ; 18(10): 559-570, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32533130

RESUMO

Eukaryotic gene expression is regulated not only by genomic enhancers and promoters, but also by covalent modifications added to both chromatin and RNAs. Whereas cellular gene expression may be either enhanced or inhibited by specific epigenetic modifications deposited on histones (in particular, histone H3), these epigenetic modifications can also repress viral gene expression, potentially functioning as a potent antiviral innate immune response in DNA virus-infected cells. However, viruses have evolved countermeasures that prevent the epigenetic silencing of their genes during lytic replication, and they can also take advantage of epigenetic silencing to establish latent infections. By contrast, the various covalent modifications added to RNAs, termed epitranscriptomic modifications, can positively regulate mRNA translation and/or stability, and both DNA and RNA viruses have evolved to utilize epitranscriptomic modifications as a means to maximize viral gene expression. As a consequence, both chromatin and RNA modifications could serve as novel targets for the development of antivirals. In this Review, we discuss how host epigenetic and epitranscriptomic processes regulate viral gene expression at the levels of chromatin and RNA function, respectively, and explore how viruses modify, avoid or utilize these processes in order to regulate viral gene expression.


Assuntos
Vírus de DNA/genética , Epigênese Genética , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Processamento Pós-Transcricional do RNA , Vírus de RNA/genética , Animais , Antivirais/farmacologia , Cromatina/química , Cromatina/metabolismo , Cromatina/virologia , Vírus de DNA/efeitos dos fármacos , Vírus de DNA/metabolismo , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Células Eucarióticas/virologia , Histonas/genética , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/metabolismo , Transcriptoma , Latência Viral , Replicação Viral
16.
Molecules ; 25(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560203

RESUMO

BACKGROUND: In recent decades, several viruses have jumped from animals to humans, triggering sizable outbreaks. The current unprecedent outbreak SARS-COV-2 is prompting a search for new cost-effective therapies to combat this deadly pathogen. Suitably functionalized polysubstituted quinoxalines show very interesting biological properties (antiviral, anticancer, and antileishmanial), ensuring them a bright future in medicinal chemistry. OBJECTIVES: Focusing on the promising development of new quinoxaline derivatives as antiviral drugs, this review forms part of our program on the anti-infectious activity of quinoxaline derivatives. METHODS: Study compiles and discusses recently published studies concerning the therapeutic potential of the antiviral activity of quinoxaline derivatives, covering the literature between 2010 and 2020. RESULTS: A final total of 20 studies included in this review. CONCLUSIONS: This review points to a growing interest in the development of compounds bearing a quinoxaline moiety for antiviral treatment. This promising moiety with different molecular targets warrants further investigation, which may well yield even more encouraging results regarding this scaffold.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Quinoxalinas/uso terapêutico , COVID-19 , Vírus de DNA/efeitos dos fármacos , Humanos , Pandemias , Quinoxalinas/química , SARS-CoV-2 , Relação Estrutura-Atividade
17.
Mater Sci Eng C Mater Biol Appl ; 112: 110924, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409074

RESUMO

Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.


Assuntos
Antivirais/química , Nanopartículas/química , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus de DNA/efeitos dos fármacos , Vírus de DNA/fisiologia , Grafite/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas/uso terapêutico , Nanopartículas/toxicidade , Polímeros/química , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Pontos Quânticos/toxicidade , Zika virus/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/veterinária
18.
Mar Drugs ; 18(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331442

RESUMO

The enzymatic depolymerization of fucoidans from brown algae allowed the production of their standardized derivatives with different biological activities. This work aimed to compare the antiviral activities of native (FeF) and modified with enzyme (FeHMP) fucoidans from F. evanescens. The cytotoxicity and antiviral activities of the FeF and FeHMP against herpes viruses (HSV-1, HSV-2), enterovirus (ECHO-1), and human immunodeficiency virus (HIV-1) in Vero and human MT-4 cell lines were examined by methylthiazolyltetrazolium bromide (MTT) and cytopathic effect (CPE) reduction assays, respectively. The efficacy of fucoidans in vivo was evaluated in the outbred mice model of vaginitis caused by HSV-2. We have shown that both FeF and FeHMP significantly inhibited virus-induced CPE in vitro and were more effective against HSV. FeF exhibited antiviral activity against HSV-2 with a selective index (SI) > 40, and FeHMP with SI ˃ 20, when they were added before virus infection or at the early stages of the HSV-2 lifecycle. Furthermore, in vivo studies showed that after intraperitoneal administration (10 mg/kg), both FeF and FeHMP protected mice from lethal intravaginal HSV-2 infection to approximately the same degree (44-56%). Thus, FeF and FeHMP have comparable potency against several DNA and RNA viruses, allowing us to consider the studied fucoidans as promising broad-spectrum antivirals.


Assuntos
Antivirais/farmacologia , Fucus/química , Polissacarídeos/farmacologia , Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Chlorocebus aethiops , Vírus de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Polissacarídeos/isolamento & purificação , Vírus de RNA/efeitos dos fármacos , Vaginite/tratamento farmacológico , Vaginite/virologia , Células Vero
19.
Sci Rep ; 10(1): 4746, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179788

RESUMO

Ginkgolic acids (GA) are alkylphenol constituents of the leaves and fruits of Ginkgo biloba. GA has shown pleiotropic effects in vitro, including: antitumor effects through inhibition of lipogenesis; decreased expression of invasion associated proteins through AMPK activation; and potential rescue of amyloid-ß (Aß) induced synaptic impairment. GA was also reported to have activity against Escherichia coli and Staphylococcus aureus. Several mechanisms for this activity have been suggested including: SUMOylation inhibition; blocking formation of the E1-SUMO intermediate; inhibition of fatty acid synthase; non-specific SIRT inhibition; and activation of protein phosphatase type-2C. Here we report that GA inhibits Herpes simplex virus type 1 (HSV-1) by inhibition of both fusion and viral protein synthesis. Additionally, we report that GA inhibits human cytomegalovirus (HCMV) genome replication and Zika virus (ZIKV) infection of normal human astrocytes (NHA). We show a broad spectrum of fusion inhibition by GA of all three classes of fusion proteins including HIV, Ebola virus (EBOV), influenza A virus (IAV) and Epstein Barr virus (EBV). In addition, we show inhibition of a non-enveloped adenovirus. Our experiments suggest that GA inhibits virion entry by blocking the initial fusion event. Data showing inhibition of HSV-1 and CMV replication, when GA is administered post-infection, suggest a possible secondary mechanism targeting protein and DNA synthesis. Thus, in light of the strong effect of GA on viral infection, even after the infection begins, it may potentially be used to treat acute infections (e.g. Coronavirus, EBOV, ZIKV, IAV and measles), and also topically for the successful treatment of active lesions (e.g. HSV-1, HSV-2 and varicella-zoster virus (VZV)).


Assuntos
Antivirais/farmacologia , Infecções por Vírus de DNA/metabolismo , Vírus de DNA/efeitos dos fármacos , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/efeitos dos fármacos , Salicilatos/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas Virais de Fusão/antagonistas & inibidores , Animais , Astrócitos/metabolismo , Chlorocebus aethiops , Replicação do DNA/efeitos dos fármacos , Infecções por Vírus de DNA/virologia , Vírus de DNA/genética , DNA Viral/genética , Células HEK293 , Humanos , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Células Vero , Proteínas do Envelope Viral/biossíntese , Proteínas Virais de Fusão/biossíntese , Vírion/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
Future Microbiol ; 15: 389-400, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32166967

RESUMO

Brincidofovir (BCV) is a lipid conjugate of cidofovir with good oral bioavailability, enabling optimal intracellular levels of the active drug. Lower rates of nephrotoxicity and myelotoxicity make it a favorable alternative. Despite a greater safety profile among pediatric hematopoietic cell transplant recipients, the oral formulation has been associated with increased gastrointestinal toxicity in adult hematopoietic cell transplant recipients. Oral BCV continues to be developed as a countermeasure against smallpox, while a potentially safer intravenous preparation has been out licensed to another company. BCV has demonstrated great in vitro potency against double-stranded DNA viruses, especially adenovirus. Because of its importance for immunocompromised patients, this review aims to evaluate BCV's clinical and safety profile to support its continued development.


Assuntos
Infecções por Adenovirus Humanos/tratamento farmacológico , Antivirais , Citosina/análogos & derivados , Infecções por Vírus de DNA/tratamento farmacológico , Vírus de DNA/efeitos dos fármacos , Organofosfonatos , Infecções por Adenovirus Humanos/virologia , Animais , Antivirais/efeitos adversos , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/uso terapêutico , Ensaios Clínicos como Assunto , Citosina/efeitos adversos , Citosina/farmacocinética , Citosina/farmacologia , Citosina/uso terapêutico , Infecções por Vírus de DNA/virologia , Humanos , Hospedeiro Imunocomprometido , Organofosfonatos/efeitos adversos , Organofosfonatos/farmacocinética , Organofosfonatos/farmacologia , Organofosfonatos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...